Blink characterization using curve fitting and clustering algorithms

Joseph K. Brosch, Ziwei Wu, Carolyn G. Begley, Tobin A. Driscoll, Richard J. Braun

Abstract


The motion of the upper eyelid during blinking can be important in identifying possible diseases and syndromes that affect the eye. Hypothesized lid motion functions are fit to the dynamic position of the center of the upper lid under four experimentally controlled conditions in a pilot study. The coefficients of these nonlinear fits are used to classify blinks.  Agglomerative hierarchical and spectral clustering were used to attempt an automatic distinction between partial and full blinks as well as between normal and abnormal blinks.  Results for both approaches are similar when the input data is suitably normalized.  Clustering finds outlying blinks that do not fit the model functions for lid motion well and that differ from the majority of blinks in our sample; however, those blinks may not be outliers based on easily observed data such as blink amplitude and duration.  This type of analysis has potential for studying blink dynamics under normal and pathological conditions, but more work is needed with larger sets of data from blinks.

Keywords


hierarchical clustering, spectral clustering, blinking, blink classification, dry eye

Full Text:

PDF

References


M. G. Doane. Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human

eyeblink. Am. J. Ophthalmol., 89:507–516, 1980.

A. A. V. Cruz, D. M. Garcia, C. T. Pinto, and S. P. Cechetti. Spontaneous eyeblink activity. Ocul. Surf.,

:29–30, 2011.

H. Wong, I. Fatt, and C.J. Radke. Deposition and thinning of the human tear film. J. Colloid Interface

Sci., 184:44–51, 1996.

M. B. Jones, C. P. Please, D. L. S. McElwain, G. R. Fulford, A. P. Roberts, and M. J. Collins. Dynamics

of tear film deposition and draining. Math. Med. Biol., 22:265–88, 2005.

A. Heryudono, R.J. Braun, T. A. Driscoll, L.P. Cook, K. L. Maki, and P. E. King-Smith. Single-equation

models for the tear film in a blink cycle: Realistic lid motion. Math. Med. Biol., 24:347–77, 2007.

Quan Deng, R. J. Braun, and T. A. Driscoll. Heat transfer and tear film dynamics over multiple blink

cycles. Phys. Fluids, 26(7):071901, 2014.

J. Palakuru, J. Wang, and J.V. Aquavella. Effect of blinking on tear dynamics. Invest. Ophthalmol. Vis.

Sci., 48:3032–7, 2007.

R. J. Braun, P. E. King-Smith, C. G. Begley, Longfei Li, and N. R. Gewecke. Dynamics and function of

the tear film in relation to the blink cycle. Prog. Retin. Eye Res., 45:132–164, 2015.

K. A. Manning and C. Evinger. Different forms of blinks and their two-stage control. Exp. Brain Res.,

:579–588, 1986.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy,

T. Glonek, and J. V. Greiner. Tear film lipid layer thickness as a function of blinking. Cornea, 13:354–

, 1994.

C. Evinger, K. A. Manning, and P. A. Sibony. Eyelid movements. mechanisms and normal data. Invest.

Ophthalmol. Vis. Sci., 32:387–400, 1991.

J. Kaminer, A.S. Powers, K. G. Horn, C. Hui, and C. Evinger. Characterizing the spontaneous blink

generator: An animal model. J. Neurosci., 31:11256–11267, 2011.

D. R. Korb, C. A. Blackie, and E. N. McNally. Incomplete blinking: Exposure keratopathy, lid wiper

epitheliopathy, dry eye, refractive surgery, and dry contact lenses. Cont. Lens Ant. Eye, 30:37–51,

H. Pult, D. R. Korb, P. J. Murphy, B. H. Riede-Pult, and C. A. Blackie. A new model of central lid margin

apposition and tear film mixing in spontaneous blinking. Cont. Lens Ant. Eye, 38:173–180, 2015.

Quan Deng, R. J. Braun, T. A. Driscoll, and P.E. King-Smith. A model for the tear film and ocular

surface temperature for partial blinks. Interfacial Phenom. Heat Transf., 1(4):357–381, 2013.

M. C. Acosta, J. Gallar, and C. Belmonte. The influence of eye solutions on blinking and ocular comfort

at rest and during work at video display terminals. Exp. Eye Res., 68:663–669, 1999.

G. Cardona, C. Garcia, C. Seres, M. Vilaseca, and J. Gispets. Blink rate, blink amplitude, and tear film

integrity during dynamic visual display terminal tasks. Curr. Eye Res., 36:1909–197, 2011.

N.L. Himebaugh, C.G. Begley, A. Bradley, and J.A. Wilkinson. Blinking and tear break-up during four

visual tasks. Optom. Vis. Sci., 86(2):106–114, 2009.

T. Schlote, G. Kadner, and N. Freudenthaler. Marked reduction and distinct patterns of eye blinking in

patients with moderately dry eyes during video display terminal use. Graefes Arch. Clin. Exp. Ophthalmol.,

:306-312, 2004.

K. Nakamori, M. Odawara, T. Nakajima, T. Mizutani, and K. Tsubota. Blinking is controlled primarily by

ocular surface conditions. Am. J. Ophthalmol., 124:24–30, 1997.

Z. Wu, C. G. Begley, P. Situ, T. Simpson, and H. Liu. The effects of mild ocular surface stimulation and

concentration on spontaneous blink parameters. Curr. Eye Res., 38(1):9–20, 2014.

K. Tsubota, S. Hata, Y. Okusawa, F. Egami, T Ohtsuki, and K. Nakamori. Quantitative videographic

analysis of blinking in normal subjects and patients with dry eye. Arch. Ophthalmol., 114:715–720,

H. Liu, C. Begley, M. Chen, A. Bradley, J. Bonanno, N. A. McNamara, J. D. Nelson, and T. Simpson. A

link between tear instability and hyperosmolarity in dry eye. Invest. Ophthalmol. Vis. Sci., 50:3671–79,

C. G. Begley, T. Simpson, H. Liu, E. Salvo, Z. Wu, A. Bradley, and P. Situ. Quantitative analysis of tear

film fluorescence and discomfort during tear film instability and thinning. Invest. Ophthalmol. Vis. Sci.,

:2645–2653, 2013.

Z. Wu, C. G. Begley, P. Situ, and T. Simpson. The effects of increasing ocular surface stimulation on

blinking and sensation. Invest. Ophthalmol. Vis. Sci., 55(3):1555–1563, 2014.

A. Berke and S. Mueller. Einfluss des lidschlages auf die kontaktlinse und die zugrundeliegenden

kräfte. die Kontaktlinse, 1:17–26, 1996.

A. Berke and S. Mueller. The kinetics of lid motion and its effects on the tear film. In D. A. Sullivan,

D. A. Dartt, and M. A. Meneray, editors, Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, pages

–424. New York: Plenum, 1998.

L. Jossic, P. Lefevre, C. de Loubens, A. Magnin, and C. Corre. The fluid mechanics of shear-thinning

tear substitutes. J. Non-Newtonian Fluid Mech., 61:1–9, 2009.

M. B. Jones, D. L. S. McElwain, G. R. Fulford, M. J. Collins, and A. P. Roberts. The effect of the lipid

layer on tear film behavior. Bull. Math. Biol., 68:1355–81, 2006.

E. Aydemir, C. J. W. Breward, and T. P. Witelski. The effect of polar lipids on tear film dynamics. Bull.

Math. Biol., pages 1–31, 2010.

V. Zubkov, C. J. W. Breward, and E. A. Gaffney. Coupling fluid and solute dynamics within the ocular

surface tear film: A modelling study of black line osmolarity. Bull. Math. Biol., 74:2062–2093, 2012.

V. Estivill-Castro. Why so many clustering algorithms? a position paper. ACM SIGKDD Explorations

Newsletter, 4(1):65–75, 2002.

B. Everitt. Cluster Analysis. Wiley, 5th edition, 2011. Chichester, West Sussex, UK.

U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17:395–416, 2007.

I. Bürk. Spectral clustering. Master’s thesis, University of Stuttgart, 8 2012. (Bachelors Thesis).

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–254, 1967.

C. Belmonte and J. Gallar. Cold thermoreceptors, unexpected players in tear production and ocular

dryness sensations. Invest. Ophthalmol. Vis. Sci., 52:3888–3892, 2011.

A. Parra, O. Gonzalez-Gonzalez, J. Gallar, and C. Belmonte. Tear fluid hyperosmolality increases

nerve impulse activity of cold thermoreceptor endings of the cornea. Pain, 155:1481–1491, 2014.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal for Modeling in Ophthalmology